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Abstract

The method of the joint probability distribution
functions of structure factors has been extended to
re¯ections with rational indices. The most general case,
space group P1, has been considered. The positional
parameters are the primitive random variables of our
probabilistic approach, while the re¯ection indices are
kept ®xed. Quite general joint probability distributions
have been considered from which conditional distribu-
tions have been derived: these proved applicable to the
accurate estimation of the real and imaginary parts of a
structure factor, given prior information on other
structure factors. The method is also discussed in
relation to the Hilbert-transform techniques.

1. Symbols and notation

The following list de®nes some of the symbols used in
this paper.
N: number of atoms in the unit cell.
fj : scattering factor of the jth atom (thermal factor
included).
h: three-dimensional index with integral components
(h, k, l).
p, q: three-dimensional indices with rational components
(p1, p2, p3), (q1, q2, q3), respectively.
ps � p1 � p2 � p3.
qs � q1 � q2 � q3.
': phase of the structure factor.P

1�p�,
P

1�q� �
PN

j�1 fj calculated for the re¯ections
with vectorial indices p and q, respectively.P

2�p�,
P

2�q� �
PN

j�1 f 2
j calculated for the re¯ections

with vectorial indices p and q, respectively.P
11�p; q� �PN

j�1 fj�p�fj�q�.
Papers by Giacovazzo & Siliqi (1998), Giacovazzo,

Siliqi, Carrozzini et al. (1999) and Giacovazzo, Siliqi,
Altomare et al. (1999) will be referred as papers I, II and
III, respectively.

2. Introduction

In papers I and II of this series, the statistical prop-
erties of the structure factors with rational indices
were investigated. In papers I and II, distributions
P(|Fp|) were obtained for the P1 and �P1 cases, respec-
tively, which show remarkable deviations from the
distributions derived by Wilson (1942) for the standard
index re¯ections. Distributions P('p) and P�'p

��jFpj�
were also derived, which proved to be, in favourable
cases, quite different from the uniform Wilson phase
distribution.

Papers I and II can be considered as the ®rst step for
the development of direct-methods procedures invol-
ving rational index re¯ections. To this end, joint prob-
ability distributions of structure factors were derived for
the P�1 case in paper III. An important result of that
study is that phase and moduli estimates arise from joint
probability distribution functions involving re¯ections
whose indices do not necessarily give rise to structure
invariants or seminvariants. This additional degree of
freedom is allowed by the rationality of the indices and
by the basic assumptions on the primitive random
variables.

In this paper, we will derive in P1 the joint probability
distribution functions of structure factors with rational
indices. We will ®rst focus our attention on the distri-
bution P(Fp, Fq), where p and q can be any pair of
vectors with rational components, the case of integral
components included. We will show that the simplest
formulae are obtained by including in the calculations
the real and imaginary parts of the structure
factors rather than their moduli and phases, i.e.
it is easier to calculate P�Ap;Bp;Aq;Bq; . . .� than
P�jFpj; 'p; jFqj; 'q; . . .�. The formulae so obtained will
be applied to the case in which p is a half-integral index
re¯ection while the q's are standard indices, or vice
versa. To follow all the mathematical calculations, the
reader may wish to refer to the formulae collected in
Appendix B of paper III.
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Special attention will also be devoted to the
symmetry; indeed, a lack of symmetry occurs when
rational indices are considered.

Recently, the discrete Hilbert transform has been
evoked (Ramachandran, 1969; Mishnev, 1993, 1996;
Zanotti et al., 1996) to link structure amplitudes having
half-integral Miller indices with structure amplitudes of
standard re¯ections. The relation between such tech-
niques and our probabilistic method is discussed.

3. The joint probability distribution P(Ap, Bp, Aq, Bq)

Let us suppose that the re¯ection indices are ®xed while
the variables xj, yj and zj ( j � 1; . . . ;N) are indepen-
dently and uniformly distributed in the interval (0, 1).
The structure factors are then variables themselves. In
P1,

Fp � jFpj exp�i'p�

� PN
j�1

fj exp�2�ip � rj�

�Ap � iBp;

Ap �
PN
j�1

fj cos�2�p � rj�;

Bp �
PN
j�1

fj sin�2�p � rj�:

The characteristic function C�up; vp; uq; vq� of the
distribution P�Ap;Bp;Aq;Bq� is given by

C�up; vp; uq; vq� � hexp i�upAp � vpBp � uqAq � vqBq�i
' exp

�
i�upK10�p� � vpK01�p�

� uqK10�q� � vqK01�q��
ÿ 1

2�u2
pK20�p� � v2

pK02�p�
� u2

qK20�q� � v2
qK02�q�

� 2upvpK12�p� � 2upuqK13�p; q�
� 2upvqK14�p; q� � 2vpuqK23�p; q�
� 2vpvqK24�p; q� � 2uqvqK34�q��

	
;

where up, vp, uq and vq are carrying variables associated
with Ap, Bp, Aq and Bq, respectively, and

K10�p� � hApi �
P

1�p�cp;

K01�p� � hBpi �
P

1�p�sp;

K10�q� � hAqi �
P

1�q�cq;

K01�q� � hBqi �
P

1�q�sq;

K20�p� � hA2
pi ÿ hApi2 �

P
2�p��1� c2p ÿ 2c2

p�=2;

K02�p� � hB2
pi ÿ hBpi2 �

P
2�p��1ÿ c2p ÿ 2s2

p�=2;

K20�q� � hA2
qi ÿ hAqi2 �

P
2�q��1� c2q ÿ 2c2

q�=2;

K02�q� � hB2
qi ÿ hBqi2 �

P
2�q��1ÿ c2q ÿ 2s2

q�=2;

K12�p� � hApBpi ÿ hApihBpi
� P

2�p��s2p ÿ 2cpsp�=2;

K13�p; q� � hApAqi ÿ hApihAqi
� P

11�p; q��cp�q � cpÿq ÿ 2cpcq�=2;

K14�p; q� � hApBqi ÿ hApihBqi
� P

11�p; q��sp�q � sqÿp ÿ 2cpsq�=2;

K23�p; q� � hBpAqi ÿ hBpihAqi
� P

11�p; q��sp�q � spÿq ÿ 2spcq�=2;

K24�p; q� � hBpBqi ÿ hBpihBqi
� P

11�p; q��cpÿq ÿ cp�q ÿ 2spsq�=2;

K34�q� � hAqBqi ÿ hAqihBqi
� P

2�q��s2q ÿ 2cqsq�=2:

In agreement with paper I,

cp � cos��ps�cp1=2cp2=2cp3=2

sp � sin��ps�cp1=2cp2=2cp3=2

cpi
� sin�2�pi�=�2�pi�

spi
� �1ÿ cos�2�pi��=�2�pi�; i � 1; 2; 3:

All the cumulants were derived in paper I, except for
K13(p, q), K14(p, q), K23(p, q) and K24(p, q) (cumulants
involving both p and q re¯ections). In Appendix A,
K14(p, q) is derived, as a representative of such cumu-
lants. The required joint probability distribution is

P�Ap;Bp;Aq;Bq�

' �2��ÿ4
R1
ÿ1

. . .
R1
ÿ1

exp
ÿÿ i

�
up�Ap ÿ K10�p��

� vp�Bp ÿ K01�p�� � uq�Aq ÿ K10�q��
� vq�Bq ÿ K01�q��

	�
� exp

�ÿ 1
2�u2

pK20�p� � v2
pK02�p�

� u2
qK20�q� � v2

qK02�q� � 2upvpK12�p�
� 2upuqK13�p; q� � 2upvqK14�p; q�
� 2vpuqK23�p; q� � 2vpvqK24�p; q�
� 2uqvqK34�q��

	
dup dvp duq dvq

� �2��ÿ4
R1
ÿ1

. . .
R1
ÿ1

exp�i �TU� exp�ÿ1
2
�UKU� dU;

�1�

where
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�U � �up; vp; uq; vq�;
�T � �d10�p�; d01�p�; d10�q�; d01�q�� � �d1; d2; d3; d4�;

d10�p� � �K10�p� ÿ Ap�; d01�p� � �K01�p� ÿ Bp�; . . . ;

K �

K20�p� K12�p� K13�p; q� K14�p; q�
K12�p� K02�p� K23�p; q� K24�p; q�
K13�p; q� K23�p; q� K20�q� K34�q�
K14�p; q� K24�p; q� K34�q� K02�q�

���������

���������:
K is a variance±covariance matrix, which, by de®nition,
must have det K � 0. After some calculations, (1)
reduces to

P�Ap;Bp;Aq;Bq�
� �2��ÿ2�det k�1=2 exp�ÿ1

2
�TkT�; �2�

where

k � Kÿ1: �3�
In a more explicit form, (2) may be written as

P�Ap;Bp;Aq;Bq�

� �2��ÿ2�det k�1=2 exp

�
ÿ 1

2

P4

j�1

�jjd
2
j

ÿP4

j�2

�1jd1dj ÿ
P4

j1>j2�2

�j1j2
dj1

dj2

�
:

�4�
From (4), two useful conditional distributions may be
derived. Firstly,

P�Ap

��Bp;Aq;Bq�
� ��11=2��1=2 exp�ÿ1

2�11�Ap ÿ hApi�2�; �5�
where

hApi �K10�p� � �ÿ1
11 ��12d01�p� � �13d10�q�

� �14d01�q�� �6�
is the conditional expected value of Ap and �ÿ1

11 is the
variance. Secondly,

P�Bp

��Ap;Aq;Bq�
� ��22=2��1=2 exp�ÿ1

2�22�Bp ÿ hBpi�2�; �7�
where

hBpi �K01�p� � �ÿ1
22 ��12d10�p� � �23d10�q�

� �24d01�q�� �8�
is the conditional expected value of Bp and �ÿ1

22 is the
variance.

The distributions (5) and (7) suggest that Ap and Bp

may be estimated independently: in particular, the
estimate of Ap may pro®t by the prior knowledge of Bp,
Aq and Bq, and the estimate of Bp by the prior knowl-
edge of Ap, Aq and Bq.

4. The joint probability distribution P(|Fp|, |Fq|, up, uq)

In general, distributions like P�A1; . . . ;An;B1; . . . ;Bn�
are an intermediate step towards the calculation of the
distributions P�jF1j; . . . ; jFnj; '1; . . . ; 'n�. There is a
basic reason for this: the |F |'s are the observables
and therefore prior knowledge of them may be used
for deriving useful conditional distributions for the
phases. In the speci®c case we are treating here,
|Fp| is an observable only when p is an integral compo-
nent vector. Therefore, there are tentative reasons
for preferring P�jF1j; . . . ; jFnj; '1; . . . ; 'n� to
P�A1; . . . ;An;B1; . . . ;Bn�. In order to examine the
possible role of such distributions, we derive, in this
section, the distribution P�jFpj; jFqj; 'p; 'q� and, in x5,
some conditional distributions. We have

P�jFpj; jFqj; 'p; 'q�
' �2��ÿ2�det k�1=2jFpFqjL
� exp

�ÿ 1
2jFpj2��11 cos2 'p � �22 sin2 'p

� 2�12 sin 'p cos 'p�
ÿ 1

2jFqj2��33 cos2 'q � �44 sin2 'q

� 2�34 sin 'q cos 'q�
ÿ jFpFqj��13 cos 'p cos 'q � �14 cos 'p sin 'q

� �23 sin 'p cos 'q � �24 sin 'p sin 'q�
� jFpj��11K10�p� cos 'p � �22K01�p� sin 'p

� �12K10�p� sin 'p � �12K01�p� cos 'p

� �13K10�q� cos'p � �14K01�q� cos 'p

� �23K10�q� sin 'p � �24K01�q� sin 'p�
� jFqj��33K10�q� cos 'q � �44K01�q� sin 'q

� �13K10�p� cos'q � �14K10�p� sin 'q

� �23K01�p� cos'q � �24K01�p� sin 'q

� �34K10�q� sin 'q � �34K01�q� cos 'q�
	
; �9�

where

L � exp
�ÿ 1

2��11K2
10�p� � �22K2

01�p�
� �33K2

10�q� � �44K2
01�q�

� 2�12K10�p�K01�p� � 2�13K10�p�K10�q�
� 2�14K10�p�K01�q� � 2�23K01�p�K10�q�
� 2�24K01�p�K01�q� � 2�34K10�q�K01�q��

	
:

Equation (9) is a rather entangled distribution, which
becomes much more simple only when both p and q are
standard indices. Then
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K10�p� � K01�p� � K10�q� � K01�q�;

K �

P
2�p�=2 0 0 0

0
P

2�p�=2 0 0

0 0
P

2�q�=2 0

0 0 0
P

2�q�=2

���������

���������;
�det k� � 16

��P2
2�p�

P2
2�q�

�
;

and the distribution (9) reduces to the product of two
Wilson distributions:

P�jFpj; jFqj; 'p; 'q� ' ��2�ÿ1jFpFqj
�P

2�p�
P

2�q�
�ÿ1

� exp
�ÿ jFpj2

��P
2�p�

�
ÿ jFqj2

��P
2�q�

�	
: �10�

5. The conditional distributions P(up| |Fp|, |Fq|, uq) and
P(|Fp| | |Fq|, uq)

From (9), several conditional distributions can be
obtained. Here, we derive only two of them, as examples
for the other cases. By application of standard tech-
niques,

P�'p

��jFpj; jFqj; 'q� ' gÿ1 exp�ÿjFpj2Z2 cos 2�'p ÿ �2�
� jFpjZ1 cos�'p ÿ �1��

is obtained, where

g � R2�
0

exp�ÿjFpj2Z2 cos 2�'p ÿ �2�

� jFpjZ1 cos�'p ÿ �1�� d'p; �11�

Z2
2 � ��12=2�2 � ���11 ÿ �22�=4�2;

�2 � 1
2 tanÿ1�2�12=��11 ÿ �22��;

Z2
1 � a2

1 � a2
2;

a1 � �11K10�p� � �12K01�p�
� �13�K10�q� ÿ jFqj cos 'q�
� �14�K01�q� ÿ jFqj sin 'q�;

a2 � �22K01�p� � �12K10�p�
� �23�K10�q� ÿ jFqj cos 'q�
� �24�K01�q� ÿ jFqj sin 'q�;

�1 � tanÿ1�a2=a1�:
The integral on the right-hand side of (11) may be
calculated by expanding the exponential term in a series
of Bessel functions according to (Abramowitz & Stegun,
1972)

exp�ÿjFpj2Z2 cos 2�'p ÿ �2��
� I0�jFpj2Z2� � 2

P1
n�1

�
In�ÿjFpj2Z2� cos 2n�'p ÿ �2�

�
:

�12�
The application of the relationsR2�

0

cos�n'� exp�ÿZ cos'� d' � 2�In�Z�;
R2�
0

sin�n'� exp�ÿZ cos'� d' � 0

gives

g � 2�
�
I0�jFpj2Z2�I0�jFpjZ1� � 2

P1
n�1

cos 2n��1 ÿ �2�

� In�ÿjFpj2Z2�I2n�ÿjFpjZ1�
�
:

If p and q are integral indices, then

a1 � a2 � Z1 � Z2 � �12 � 0;

�11 � �22 � 2
�P

2�h�;
�13�

�1 and �2 are unpredictable, and g � 2�. Therefore, in
accordance with Wilson statistics,

P�'h

��jFhj; jFkj; 'k� ' �2��ÿ1:

The conditional distribution P�jFpj
��jFqj; 'q� is de®ned

as

P�jFpj
��jFqj; 'q� �

P�jFpj; jFqj; 'q�R1
0 P�jFpj; jFqj; 'q� djFpj

� Lÿ1jFpj exp�ÿjFpj2��11 � �22�=4�

� R2�
0

exp�ÿjFpj2Z2 cos 2�'p ÿ �2�

� jFpjZ1 cos�'p ÿ �1�� d'p;

where L is a normalization constant that does not
depend on |Fp|. According to (12), we have

P�jFpj
��jFqj; 'q� � Lÿ1jFpj exp�ÿjFpj2��11 � �22�=4�

�
h

I0�jFpj2Z2�I0�jFpjZ1�

� 2
P1
n�1

cos 2n��1 ÿ �2�In�ÿjFpj2Z2�

� I2n�ÿjFpjZ1�
i
: �14�

The value of the normalizing function Lÿ1 can be
obtained by direct integration via formula 6.633 of
Gradshteyn & Ryzhik (1965), but it is more practical to
derive it by numerical methods.

The conditional distributions derived in this section
(i.e. in terms of moduli and phases) are more entangled
than those derived in x3 (i.e. in terms of real and
imaginary parts of structure factors). If more q re¯ec-
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tions are involved in the calculations, the level of
complexity can rapidly increase if moduli and phases are
employed. Therefore, we decided to study distributions
of a general form in terms of Ai and Bi rather than of |Fi|
and 'i.

6. The distribution P�Ap;Bp;Aq1
;Bq1

; . . . ;Aqn
;Bqn
�

The distributions (5) and (7) answer questions like `how
may Ap and Bp can be estimated if Aq and Bq are
known?'. If more pairs (Aq, Bq) are a priori known, this
question becomes `how may Ap and Bp can be estimated
when (Aqj

, Bqj
), j � 1; . . . ; n, are a priori known?'. The

problem may be solved if the conditional distributions

P�Ap

��fAqj
;Bqj

; j � 1; . . . ; ng�
and

P�Bp

��fAqj
;Bqj

; j � 1; . . . ; ng�
are derived. This is the aim of this section. In order to
make simpler the reading of the conclusive formulae, the
notation is simpli®ed as follows.

(a) The joint probability distribution

P�Ap;Bp;Aq1
;Bq1

; . . . ;Aqn
;Bqn
�

is denoted by

P�X1;X2; . . . ;X2n�1;X2n�2�; �15�
where the variable Xj may represent Ap, Bp, Aq, Bq

according to the value of j. In particular,

X1 � Ap; X2 � Bp

will always denote the variables we want to estimate.
Then,

X3 � Aq1
;X4 � Bq1

; . . . ;X2n�1 � Aqn
;X2n�2 � Bqn

:

In accordance with the above notation, odd and even
values of j correspond to A and B variables, respectively.

(b) The characteristic function of (15), say

C�u1; u2; . . . ; u2n�1; u2n�2�;
is expressed in terms of the carrying variable uj: each uj

is associated with the corresponding Xj in (15).
(c) The ®rst-order cumulants of the distribution (15)

is denoted by Kj: they represent K10 or K01 cumulants
according to the value of j (e.g. Kj will represent a K10

cumulant if j is odd, a K01 cumulant if j is even).
(d) The second-order cumulants of the distribution

(15) are denoted by the general symbol Kij (remember
that K is a symmetric matrix):

Kij � hXiXji ÿ hXiihXji:
In particular, Kjj � hX2

j i ÿ hXji2 denotes cumulants of
type K20 or K02 according to whether Xj represents an A
or B variable.

The use of the above notation gives

C�u1; u2; . . . ; u2n�1; u2n�2�

� exp

�
i
P2n�2

j�1

Kjuj ÿ 1
2

P2n�2

j�1

Kjju
2
j ÿ

P2n�2

j�2

K1ju1uj

ÿ P2n�2

j�3

K2ju2uj ÿ
P2n�2

j1>j2�3

Kj1j2
uj1

uj2

�
:

In the above expression, we have regrouped the cumu-
lants in which Ap and Bp are involved. Then,

P�X� � �2��ÿ�2n�2� R1
ÿ1

. . .
R1
ÿ1

exp�i �TU�

� exp�ÿ1
2
�UKU� dU;

where

�X � �X1;X2; . . . ;X2n�2�;
�U � �u1; u2; . . . ; u2n�2�;
�T � �d1; d2; . . . ; d2n�2�;

dj � Kj ÿ Xj;

K �

K11 K12 . . . K1;2n�2

K21 K22 . . . K2;2n�2

..

. ..
. . .

. ..
.

K2n�2;1 K2n�2;2 . . . K2n�2;2n�2

���������

���������:
K is the (symmetric by de®nition) variance±covariance
matrix: by de®nition, �det K� � 0. By application of
standard techniques, we obtain

P�X� � �2��ÿ�n�1��det k�1=2 exp�ÿ1
2
�TkT�; �16�

where

k � Kÿ1 �17�
is again a symmetric matrix.

The distribution (16) may be rewritten in a more
useful form which emphasizes the terms involving �1j

and �2j elements:

P�X� � �2��ÿ�n�1��det k�1=2 exp
�
ÿ 1

2

P2n�2

j�1

�jjd
2
j

ÿ P2n�2

j�2

�1jd1dj ÿ
P2n�2

j�3

�2jd2dj ÿ
P2n�2

j1>j2�3

�j1j2
dj1

dj2

�
:

�18�
Several types of conditional distributions may be
derived from (18). We have

P�X1jX2; . . . ;X2n�2�
� ��11=2��1=2 exp�ÿ1

2�11�X1 ÿM1�2�; �19�
where
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M1 � K1 � �ÿ1
11

P2n�2

j�2

�1jdj �GPR1�

is the conditional expected value of X1, and

V1 � �ÿ1
11 �GPR2�

is the relative variance. Also,

hX2
1 jX2; . . . ;X2n�2i � M2

1 � V1:

It may be noted that hX2
1 jX2; . . . ;X2n�2i � M2

1 if V1 � 0.
By analogy,

P�X2jX1; . . . ;X2n�2�
� ��22=2��1=2 exp�ÿ1

2�22�X2 ÿM2�2�; �20�
where

M2 � K2 � �ÿ1
22

P2n�2

j�1
j6�2

�2jdj �GPR3�

is the expected value of X2 and

V2 � �ÿ1
22 �GPR4�

is the relative variance. Again,

hX2
2 jX1;X3; . . . ;X2n�2i � M2

2 � V2:

The distribution (19) aims at estimating X1 assuming
that X2 is known (i.e. Ap is estimated assuming that Bp is
known). Similarly, (20) provides the estimate of X2 (say
Bp) when X1 (i.e. Ap) is known. Such information is not
always available. Therefore, it may be useful to derive
also the distribution

P�X1jX3;X4; . . . ;X2n�2�

�
R1
ÿ1 P�X1;X2;X3; . . . ;X2n�2� dX2R1
ÿ1 P�X1;X3;X4; . . . ;X2n�2� dX1

� �2�Vc1�ÿ1=2 exp�ÿ1
2�X1 ÿMc1�2=Vc1�; �21�

where

Mc1 � K1 � ��11�22 ÿ �2
12�ÿ1 P2n�2

j�3

��22�1j ÿ �21�2j�dj

�GPR5�
is the expected value of X1 and

Vc1 � �22=��11�22 ÿ �2
12� �GPR6�

is the variance. Again,

hX2
1 jX2; . . . ;X2n�2i � M2

c1 � Vc1:

By analogy,

P�X2jX3;X4; . . . ;X2n�2�
� �2�Vc2�ÿ1=2 exp�ÿ1

2�X2 ÿMc2�2=Vc2�;
�22�

where

Mc2 � K2 � ��11�22 ÿ �2
12�ÿ1 P2n�2

j�3

��11�2j ÿ �21�1j�dj

�GPR7�
is the expected value of X2, and

Vc2 � �11=��11�22 ÿ �2
12� �GPR8�

is the variance. Also,

hX2
2 jX3; . . . ;X2n�2i � M2

c2 � Vc2:

It should be explicitly noted that the prior knowledge of
F000 �

PN
j�1 Zj is automatically included in the distri-

bution (18) [this information is intrinsically contained in
the structure-factor expression]. Therefore, the vector
q � �0; 0; 0� cannot be introduced into the set of q
vectors.

The relations (GPR1) to (GPR8) are the probabilistic
relationships we wished to obtain and constitute the
most general result of this paper.

7. The canonical case: the basic relations

The joint probability distribution (16) and the basic
relationships (GPR1) to (GPR8) are valid under quite
general conditions. Indeed, (a) the indices of the
re¯ections can be arbitrarily chosen in the set of the
rational indices. In particular, they are not restricted to
integral or half-integral values. (b) The value of n can be
arbitrarily ®xed in the interval �1;1�.

Even if the conclusive formulae are formally simple,
their practical use is critical when n is large: in this case,
high-order K and k matrices are involved in the calcu-
lations. Since the cumulant Kij with i 6� j are often non-
negligible, the matrices K are not diagonal, and their
inversion can be critical and time consuming for large n
values. A remarkable simpli®cation of the process may
be obtained in the canonical case (see paper III), e.g.
when Fp is a half-integral index re¯ection and the Fqj

's,
j � 1; . . . ; n, are standard re¯ections (this is the ®rst
option), or vice versa, when Fp is a standard re¯ection
and the Fqj

's, j � 1; . . . ; n, are half-integral index
re¯ections (this is the second option).

Let us consider the ®rst option when n � 1 [i.e. for the
case P�Ap;Bp;Aq;Bq�]: for the sake of clearness, we will
adopt for the cumulants the notation of the x3. Then,

cp � cq � sq � 0;

K10�p� � K10�q� � K01�q� � 0;

K20�p� �
P

2�p�
�

2; K02�p� �
P

2�p��1ÿ 2s2
p�
�

2;

K20�q� � K02�q� �
P

2�q�
�

2; �23�
K12�p� � K34�q� � K13�p; q� � K24�p; q� � 0;

K14�p; q� �P11�p; q��sp�q � sqÿp�
�

2;

K23�p; q� �P11�p; q��sp�q � spÿq�
�

2:

Accordingly,
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K �
K20�p� 0 0 K14�p; q�

0 K02�p� K23�p; q� 0

0 K23�p; q� K20�q� 0

K14�p; q� 0 0 K02�q�

��������
��������
�24�

reduces to a matrix with non-vanishing elements only on
the two main diagonals. If we now consider the matrix K
for n > 1: all the cumulants relative to the pairs (qi, qj)
vanish and K assumes, in the notation adopted in x6, the
form

K �

K11 0 0 K14 0 K16 0 K18 . . . K1;2n�2

0 K22 K23 0 K25 0 K27 0 . . . 0

0 K23 K33 0 0 0 0 0 . . . 0

K14 0 0 K44 0 0 0 0 . . . 0

0 K25 0 0 K55 0 0 0 . . . 0

K16 0 0 0 0 K66 0 0 . . . 0

0 K27 0 0 0 0 K77 0 . . . 0

K18 0 0 0 0 0 0 K88 . . . 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. . .

. ..
.

K1;2n�2 0 0 0 0 0 0 0 . . . K2n�2;2n�2

���������������������

���������������������

:

�25�
Let us now consider the second option in the case n � 1
[i.e. for the case P�Ap;Bp;Aq;Bq��. Then,

cp � sp � cq � 0;

K10�p� � K01�p� � K10�q� � 0;

K20�p� � K02�p� �
P

2�p�
�

2;

K20�q� �
P

2�q�
�

2; K02�q� �
P

2�q��1ÿ 2s2
q�
�

2; �26�
K12�p� � K34�q� � K13�p; q� � K24�p; q� � 0;

K14�p; q� �P11�p; q��sp�q � sqÿp�
�

2;

K23�p; q� �P11�p; q��sp�q � spÿq�
�

2:

Again, K reduces to the form (24). However, if n > 1, all
the cumulants relative to the pairs (qi, qj) vanish except

K24�qi; qj� � ÿ
P

11�qi; qj�sqi
sqj
:

Thus, for this second option, K assumes the form

K �

K11 0 0 K14 0 K16 0 K18 . . . K1;2n�2

0 K22 K23 0 K25 0 K27 0 . . . 0

0 K23 K33 0 0 0 0 0 . . . 0

K14 0 0 K44 0 K46 0 K48 . . . K4;2n�2

0 K25 0 0 K55 0 0 0 . . . 0

K16 0 0 K46 0 K66 0 K68 . . . K6;2n�2

0 K27 0 0 0 0 K77 0 . . . 0

K18 0 0 K48 0 K68 0 K88 . . . K8;2n�2

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. . .

. ..
.

K1;2n�2 0 0 K4;2n�2 0 K6;2n�2 0 K8;2n�2 . . . K2n�2;2n�2

���������������������

���������������������

:

However, the maximum value of |K24(qi, qj)| isP
11�qi; qj���sin�=2�=��=2��6 � 0:066

P
11�qi; qj�;

attained when qi � �1=2; 1=2; 1=2�, qj �
��1=2;�1=2;�1=2�. As soon as some of the six
components increase, K24(qi, qj) rapidly decreases.
Accordingly, as a ®rst approximation, K24(qi, qj) contri-
butions can be neglected; then K reduces again to (25).

The determinant of the matrix (25), calculated via the
Laplace technique, is given by

det�K� � Q2n�2

j�1

Kjj ÿ
Pn�1

r�2

 
K2

1;2r

Q2n�2

j�2
j 6�2r

Kjj

!

ÿPn�1

r�2

 
K2

2;2rÿ1

Q2n�2

j�1
j 6�2rÿ1

j 6�2

Kjj

!

�Pn�1

r�2

K2
1;2r

"Pn�1

s�2

 
K2

2;2sÿ1

Q2n�2

j�3
j6�2r

j6�2sÿ1

Kjj

!#
:

As an example, for n � 2,

det�K� �K11K22 . . . K66 ÿ K2
14K22K33K55K66

ÿ K2
16K22K33K44K55 ÿ K2

23K11K44K55K66

ÿ K2
25K11K33K44K66 � K2

14K2
23K55K66

� K2
14K2

25K33K66 � K2
16K2

23K44K55

� K2
16K2

25K33K44:

Let us now calculate L11, the cofactor of K11 in (25):

L11 �
Q2n�2

j�2

Kjj ÿ
Pn�1

r�2

 
K2

2;2rÿ1

Q2n�2

j�3
j 6�2rÿ1

Kjj

!

�Kÿ1
11

" Q2n�2

j�1

Kjj ÿ
Pn�1

r�2

 
K2

2;2rÿ1

Q2n�2

j�1
j6�2

j6�2rÿ1

Kjj

!#
:

For example, for n � 2,

L11 �Kÿ1
11 �K11K22 . . . K66 ÿ K2

23K11K44K55K66

ÿ K2
25K11K33K44K66�:

Now,

�ÿ1
11 � det�K�=L11

�K11 ÿ
(Pn�1

r�2

K2
1;2r

" Q2n�2

j�1
j6�2r

Kjj

ÿPn�1

s�2

 
K2

2;2sÿ1

Q2n�2

j�1
j 6�2r

j 6�2sÿ1
j6�2

Kjj

!#)

�
" Q2n�2

j�1

Kjj ÿ
Pn�1

r�2

 
K2

2;2rÿ1

Q2n�2

j�1
j6�2

j6�2rÿ1

Kjj

!#ÿ1

�K11 ÿ
Pn�1

r�2

�K2
1;2r=K2r;2r�:
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Let us now derive a simple expression for the elements
�1r. We observe (a) that the cofactors of K1r, say L1r, are
vanishing for odd values of r, and (b) that for even
values of r

L1r �K1r

"Pn�1

s�2

 
K2

2;2sÿ1

Q2n�2

j�3
j6�2sÿ1

j 6�r

Kjj

!
ÿ Q2n�2

j�2
j 6�r

Kjj

#

� K1r

K11Krr

"Pn�1

s�2

 
K2

2;2sÿ1

Q2n�2

j�1
j 6�2sÿ1

j6�2

Kjj

!
ÿ Q2n�2

j�1

Kjj

#
:

For example, for n � 2,

L14 �K14�K2
23K55K66 � K2

25K33K66

ÿ K22K33K55K66�;
L16 �K16�K2

23K44K55 � K2
25K33K44

ÿ K22K33K44K55�:
As a consequence, (a) for odd values of r (provided
r 6� 1),

�1r � 0;

and (b), for even values of r,

�1r=�11 � L1r=L11 � ÿK1r=Krr: �27a�
It may also be shown that

L22 � Kÿ1
22

" Q2n�2

j�1

Kjj ÿ
Pn�1

r�2

 
K2

1;2r

Q2n�2

j�2
j6�2r

Kjj

!#
;

�ÿ1
22 � K22 ÿ

Pn�1

r�2

�K2
2;2rÿ1=K2rÿ1;2rÿ1�;

L2r �K2r

"Pn�1

s�2

 
K2

1;2s

Q2n�2

j�3
j6�2s
j6�r

Kjj

!
ÿ Q2n�2

j�1
j6�2
j6�r

Kjj

#

� K2r

K22Krr

"Pn�1

s�2

 
K2

1;2s

Q2n�2

j�2
j 6�2s

Kjj

!
ÿ Q2n�2

j�1

Kjj

#
;

�2r=�22 � ÿK2r=Krr; �27b�
with �2r � 0 for even values of r (provided r 6� 2).

8. The canonical case: the conclusive formulae

The relationships obtained in x7 allow, for the canonical
case, a strong simpli®cation of the formulae for the
estimation of Ap and Bp; indeed, the inversion of the
matrix K is no longer necessary. In particular, the
general relationships (GPR1) and (GPR2) may be
replaced by

M1 � K1 ÿ
P2n�2

j�2

�K1j=Kjj�dj

and

V1 � K11 ÿ
Pn�1

j�2

�K2
1;2j=K2j;2j�;

respectively. Since �1j � 0 for odd values of j, we have

M1 � K1 ÿ
Pn�1

j�1

�K1;2j=K2j;2j�d2j

and, since K12 � 0,

M1 � K1 ÿ
Pn�1

j�2

�K1;2j=K2j;2j�d2j:

In a more explicit form,

hApjBp; fAq;Bqgi �K10�p� �
P

q

�K14�p; q�=K02�q��

� �Bq ÿ K01�q�� �CPR1�
and

VAp
� K10�p� ÿ

P
q

�K2
14�p; q�=K02�q��: �CPR2�

By analogy, the relations (GPR3) and (GPR4) may be
replaced by

M2 � K2 ÿ
Pn�1

j�1

�K2;2jÿ1=K2jÿ1;2jÿ1�d2jÿ1

and

V2 � K22 ÿ
Pn�1

j�1

�K2
2;2jÿ1=K2jÿ1;2jÿ1�;

respectively. In a more explicit form,

hBpjAp; fAq;Bqgi �K01�p� �
P

q

�K23�p; q�=K20�q��

� �Aq ÿ K10�q�� �CPR3�
and

VBp
� K02�p� ÿ

P
q

�K2
23�p; q�=K20�q��: �CPR4�

It may be observed that the additional prior knowledge
of anyone of Aq and Bq always reduces VBp

or VAp
,

respectively. Accordingly, the estimates are expected to
be accurate if a suf®ciently large number of q terms are a
priori known.

Let us now describe how in the canonical case the
relationships (GPR5) to (GPR8) may be simpli®ed.
Since �12 � 0 and �1j � 0 for odd values of j,
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Mc1 �K1 �
P2n�2

j�3

��1j=�11�dj

�K1 ÿ
P2n�2

j�3

�K1j=Kjj�dj

�K1 ÿ
Pn�1

j�2

�K1;2j=K2j;2j�d2j

and

Vc1 � K11 ÿ
Pn�1

j�2

�K2
1;2j=K2j;2j�:

After comparison of the above relations with those
obtained for M1 and V1, the following statement may be
made: the relations (CPR1) to (CPR4) estimate Ap and
Bp no matter if Bp and Ap, respectively, are a priori
known.

9. Rational indices and space-group symmetry

The probabilistic results obtained in the preceding
sections of this paper hold provided that (a) the space
group is P1 and (b) all the atomic coordinates satisfy the
condition

0 � xj � 1 0 � yj � 1 0 � zj � 1;

j � 1; . . . ;N: �28�
What should we expect if different assumptions are
made? We will ®rst analyse the effects of the translation
operation over re¯ections with rational indices and then
we will examine the most relevant symmetry aspects. Let
P1 be the space group; then,

Fp �
PN
j�1

fj exp�2�ip � rj�

is the structure factor when (28) is satis®ed. Suppose we
want to replace the condition (28) by the condition

ÿ1=2 � xj � 1=2; ÿ1=2 � yj � 1=2;

ÿ1=2 � zj � 1=2; j � 1; . . . ;N: �29�
This may be accomplished in two ways. Firstly, by
applying the same ®xed shift s � �ÿ1=2;ÿ1=2;ÿ1=2� to
all positional vectors. Then, as already observed in paper
I (see I, x13), the new structure factor will be

F 0p � exp�2�ip � s�Fp and jFpj � jF 0pj:
If we consider two crystal structures with the same
structure-factor moduli to be identical, it may be
concluded that two structures in P1, related by a ®xed
shift vector, are identical even if `observed' through
re¯ections with rational indices.

Secondly, by applying a proper lattice shift sj to the jth
atom when its coordinates do not satisfy (29) {e.g. if the

jth atom has coordinates �xj; yj; zj� � �0:8; 0:3; 0:7�, the
shift sj will be ��1; 0; �1�}. Then,

F 0p �
PN
j�1

fj exp�2�ip � �rj � sj�� and jFpj 6� jF 0pj:

�30�
The following result arises: two P1 structures, one
obtained from the other by shifting some atoms by
proper lattice vectors, are different when `observed'
through rational indices re¯ections.

Let us now consider a crystal structure with space-
group symmetry higher than P1. Let the atoms in the
asymmetric unit have coordinates satisfying (28), while
the equivalent positions are obtained by application of
the symmetry operators [these values, therefore, can
violate condition (28)]. Do the re¯ections with rational
indices satisfy the space-group symmetry? Since

Fp �
Pm
s�1

Pt

j�1

fj exp�2�ipCsrj�; �31�

the relation

FpRq
� Fp exp�ÿ2�ihTq� �32�

does not hold for re¯ections with rational indices unless
the space group is symmorphic. Indeed,

FpRq
exp�2�ipTq� �

Pm
s�1

Pt

j�1

fj exp�2�ip�RqRsrj

� RqTs � Tq��: �33�
If Rn � RqRs, it is easily seen that T0n � RqTs � Tq is
different from Tn by a vector s�q; s�. For example, in
P21, I � R2R2 and R2T2 � T2 � �010�. Therefore, (32)
becomes

FpRq
exp�2�ipTq� �

Pm
s�1

Pt

j�1

fj expf2�ip�Rnrj

� Tn � s�q; s��g;
which, according to (30), is not equivalent to Fp (i.e.
jFpRq
j 6� jFpj).

Let us now consider the case in which the atomic
coordinates in the asymmetric unit satisfy (28), while
proper shifts are applied to the equivalent atomic posi-
tions (as obtained by application of symmetry opera-
tors) to relocate these in the unit cell [so as to satisfy
(28)]. Then, according to the ®rst result described in this
section, an additional loss of symmetry can occur even in
symmorphic space groups. For example, half-integral
index re¯ections satisfy the space-group symmetry for
P2 and P422 but not for P21, P41 and P3. Similarly, the
rules for the symmetry phase restriction which hold for
the standard re¯ections can be violated for rational
index re¯ections. For example, the phases of the
re¯ections (p1, 0, p3), with half-integral values of p1 and
p3, are restricted to (0, �), but re¯ections (p1, 0, p3),



GIACOVAZZO, SILIQI AND FERNAÂ NDEZ-CASTANÄ O 521

(0, p2, p3), (p1, p2, 0), with p1, p2, p3 half-integers, are not
restricted in P212121 to (0, �) or to ��=2. It is then clear
that the space groups P1 and P�1 play a special role when
re¯ections with rational indices are used; indeed, most
of the calculations have to be made with reference to
these groups.

10. The Hilbert-transform method

Let F(z�) be a complex function that approaches zero as
z� approaches in®nity. Let x� be the real part of z�; then
the real part [say A(x�)] and the imaginary part [say
B(x�)] of F(z�) can be related by (Toll, 1956; London,
1973)

A�x�� � �ÿ1P

Z1
ÿ1

B�x0��
�x0� ÿ x�� dx0� �34�

and

B�x�� � ÿ�ÿ1P

Z1
ÿ1

A�x0��
�x0� ÿ x�� dx0�: �35�

P denotes the Cauchy principal value, i.e.

P

Z b

a

C�x��
�x� ÿ x�0�

dx� � lim
�!0

�Z x0ÿ�

a

�
Z b

x0��

�
C�x��
�x� ÿ x�0�

dx�;

where a and b are the lower and upper bounds,
respectively. The contributions of (34) and (35) give

F�x�� � ÿi�ÿ1P

Z 1
ÿ1

F�x0��
�x0� ÿ x�� dx0�: �36�

Relationships (34) and (35) are known in mathematics
as a Hilbert transform (HT), but are widely used in
optics as Kramers±Kronig relations. In order to famil-
iarize the reader with the Hilbert transform, we directly
derive (34) and (35) in Appendix B, on the assumption
that F�x�� � A�x�� � iB�x�� represents the general
structure-factor expression.

Ramachandran (1969) ®rst conjectured about the
possible use of the HT to solve the phase problem in
crystallography. He made the following assumptions
(treated here in one dimension, for the sake of
simplicity): (a) z� � x� de®nes a generic point in the
reciprocal space; (b) F(x�) represents the structure
factor. It follows from (34) and (35) that if B(x�) [or
A(x�)] is known for the whole range �ÿ1;1�, then
A(x�) [or B(x�)] may be calculated. The main obstacle to
single-crystal experiments is that F(x�) vanishes for all
values of x*, except for the lattice points; as a conse-
quence, the integral on the right-hand side of each of
(34) and (35) cannot be calculated in practice. To
overcome this dif®culty, Ramachandran proposed a set
of equations, which, however, involved unknown

derivatives. Thus, the equations proved of little use in
practice.

The problem was partially overcome by Mishnev
(1993), who applied the Shannon sampling theorem
(Shannon, 1949) to reconstruct F(x�) from the values
sampled at the reciprocal-lattice points. It may be of use
to the reader to recall such a basic theorem:

`Let f(t) be a band-limited function with Fourier
transform �(x):

��x� � 0 for jxj > a

f �t� � �2��ÿ1
Ra
ÿa

��x� exp�ixt� dx:

Then, f(t) can be determined from its values f(nT) at a
sequence of equidistant points t � nT, provided
T � �=a, via the relation

f �t� �
X1

n�ÿ1
f �nt� sin a0�t ÿ nT�

a0�t ÿ nT� ;

where a0 � �=T.'
The integration of the sampling theorem into the

Hilbert-transform relationships (34) and (35) led
Mishnev to propose equations relating structure ampli-
tudes with half-integral indices to structure amplitudes
with integral indices and vice versa. In the notation
adopted by Zanotti et al. (1996), such equations are
written as

A�h=2� � �8=�3�P
k1

P
k2

P
k3

B�k=2�Q3
i�1

1=�hi ÿ ki�;

�37a�

B�h=2� � ÿ �8=�3�P
k1

P
k2

P
k3

A�k=2�Q3
i�1

1=�hi ÿ ki�;

�37b�

A�k=2� � �8=�3�P
h1

P
h2

P
h3

B�h=2�Q3
i�1

1=�ki ÿ hi�;

�37c�

B�k=2� � ÿ �8=�3�P
h1

P
h2

P
h3

A�h=2�Q3
i�1

1=�ki ÿ hi�:

�37d�
In the above relationships (37), h indicates an index with
even integer components, and k one with odd integer
components. It may be worthwhile noting that, in the
summations at the right-hand sides of equations (37),
the vector q � 0 has to be included.

The reader may notice that the right-hand members
of the equations of Zanotti et al. (1996) have opposite
sign with respect to those reported here. This is probably
a typographic error in the Zanotti et al. paper.
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11. The Hilbert-transform method and the probabilistic
approach in the canonical case

It may be useful to compare equations (37) with the
relationships (CPR1) to (CPR4). We observe the
following.

(a) Equations (37) are strictly valid only if the q
re¯ections are regularly sampled and only if all of them
are used in the summations at the right-hand side. On
the contrary, (CPR1) to (CPR4) hold for any arbitrary,
®nite or in®nite, set of re¯ections, no matter if they are
regularly sampled or not. The limiting case in which the
set of q re¯ections is constituted by only one re¯ection
has been explicitly considered in xx3 and 4.

(b) When equations (37) are used as a truncated
sampling expansion, the truncation error can be
bounded (see Papoulis, 1968), but no reliability estimate
is possible. On the contrary, our probabilistic approach
always provides the variance to associate with each
estimate.

(c) If the number of q re¯ections is suf®ciently large,
then the expected conditional Ap and Bp values
provided by (CPR1) and (CPR3) should be related to
the estimates provided by (37).

Let us prove statement (c) for the ®rst option.
Introducing (23) into (CPR1) and (CPR3) gives

hApj . . .i �P
q

n�P
11�p; q��P2�q�

��sp�q � sqÿp�
o

Bq

�38�
and

hBpj . . .i �K01�p� �
P

q

n�P
11�p; q��P2�q�

�
� �sp�q � spÿq�

o
Aq: �39�

When Fq is a priori known, Fÿq is known too, and
P�FpjFq; . . .� � P�FpjFq;Fÿq; . . .�. Accordingly, the
summations at the right-hand sides of (38) and (39) [and,
obviously, of the most general relationships (GPR1) to
(GPR8)] will not contain Friedel mates. If we prefer to
include Friedel mates explicitly in the summations, we
can replace (38) and (39) by

hApj . . .i �P
q

0
n�P

11�p; q��P2�q�
�
sqÿp

o
Bq �40�

and

hBpj . . .i � K01�p� �
P

q

0
n�P

11�p; q��P2�q�
�
spÿq

o
Aq;

�41�
where the prime to the summation symbol warns the
reader that Friedel pairs may be included. It is now more
clear that, in (38) and (39), sqÿp � ÿspÿq is the term
arising from the prior knowledge of the q re¯ection,

while sÿqÿp � ÿsq�p is the term arising from the simul-
taneous knowledge of the (ÿq) re¯ection.

The numerical aspects of the relations (40) and (41)
will now be examined.

(i) According to the de®nition, sp �
sin��ps�cp1=2cp2=2cp3=2. Since p is a vector with half-
integer components,

sin��ps� � �ÿ1��2psÿ1�=2

and

cpi=2 � ��pi�ÿ1�ÿ1��2piÿ1�=2:

Then,

sp � ÿ �ÿ3�p1p2p3�ÿ1;

spÿq � ÿ �ÿ3��p1 ÿ q1��p2 ÿ q2��p3 ÿ q3��ÿ1:

(ii) At the end of x6, it was explicitly noted that the
contribution to the estimate of Fp arising from the prior
knowledge of F000 is automatically included in the
relationships (GRP1) to (GRP8). Therefore, (40) and
(41) also must not include the vector q � �0; 0; 0� in the
q set. On the contrary, h � �0; 0; 0� has to be explicitly
included in the right-hand side of the equations (37c)
and (37d). In order to make (37c), (37d), (40) and (41)
homogeneous, we observe that the contribution to
hApj . . .i arising from the prior knowledge of F000 is
vanishing, while that to be associated with hApj . . .i is
K01(p). An approximate value of K01(p) may be
obtained by allowing q to assume the 0 value in (41):�P

11�p; 0��P2�0�
�
A0sp �

�P
11�p; 0��P2�0�

�
K01�p�:
�42�

The value of (42) depends on the resolution of the
re¯ection p. If this is neglected, the following approxi-
mation holds:�P

11�p; 0��P2�0�
�
K01�p� ' K01�p�: �43�

(iii) The termP
11�p; q��P2�q� �

� PN
j�1

fj�p�fj�q�
�.� PN

j�1

f 2
j �q�

�
is a resolution-dependent function: its value changes
with q. If p is very close to q (the largest contributions
occur in this case), thenP

11�p; q��P2�q� ' 1: �44�
If the approximations (43) and (44) are introduced

into (40) and (41), one obtains

hApj . . .i � �ÿ3
P

q

0
Bq

Q3
j�1

�pi ÿ qi�ÿ1 �45�

and
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hBpj . . .i � ÿ�ÿ3
P

q

0
Aq

Q3
j�1

�pi ÿ qi�ÿ1 �46�

where now q � 0 is included in the summations. The
relations (45) and (46) are identical to (37c) and (37d) if
one recalls that k � 2p, h � 2q.

A similar procedure may be followed to relate, for the
second option, (CPR1) and (CPR2) to (37a) and (37b).
The combination of (26) with (CPR1) and (CPR2) gives

hApj . . .i �P
q

�K14�p; q�=K02�q���Bq ÿ K01�q�� �47�

and

hBpj . . .i �P
q

�K23�p; q�=K20�q��Aq: �48�

K01(q) is non-negligible only for very low resolution
re¯ections. If we adopt the approximations

Bq ÿ K01�q� � Bq

and

K02�q� �
P

2�q��1ÿ 2s2
q�=2 �P2�q�

�
2

and we introduce also the other approximations used for
the ®rst option, we obtain again (45) and (46). Now,
however, the contribution corresponding to q � 0 has
not to be included in the summations since q represents
the set of vectors with half-integral components. Rela-
tionships (45) and (46) are identical to (37a) and (37b).

12. Conclusions

The method of joint probability distribution functions
has been used to estimate structure factors with rational
indices given prior knowledge of other structure factors
with rational indices. A general approach was ®rst
described which allows the use of any type of re¯ections.
Then the canonical case was studied (involving standard
re¯ections and half-integral index re¯ections) and more
simple formulae were derived. The ®nal formulae were
compared with those obtained by Mishnev (1993) by
applying the Shannon sampling theorem to the Hilbert-
transform relationships. It is shown that our probabilistic
formulae (a) can be applied to any subset of re¯ections
and are always able to provide the reliability of the
estimates, and (b) encompass Mishnev relationships. For
brevity, the experimental calculations were not included.
A following paper will be devoted to such experimental
aspects, but we anticipate that the formulae derived here
will prove to be quite reliable.

APPENDIX A

Let us suppose that the primitive random variables xj, yj

and zj, j � 1; . . . ;N, are independently and uniformly
distributed in the interval (0,1). Then,

hApBqi �
PN

j1;j2�1

fj1
�p�fj2
�q�hcos�2�p � rj1

� sin�2�q � rj2
�i

� PN
j�1

fj�p�fj�q�h12fsin�2��p� q� � rj�

� sin�2��qÿ p� � rj�gi

�
� PN

j1 6�j2�1

fj1
�p�fj2
�q�
�

cpsq

� 1
2

P
11�p; q��sp�q � sqÿp�

� PN
j1 6�j2�1

fj1
�p�fj2
�q�cpsq: �49�

SinceP
1�p�

P
1�q� �

P
11�p; q� � PN

j1 6�j2�1

fj1
�p�fj2
�q�;

(49) may be written as

hApBqi � 1
2

P
11�p; q��sp�q � sqÿp ÿ cpsq�

�P1�p�
P

1�q�cpsq: �50�
Owing to the fact that

hApi �
P

1�p�cp and hBqi �
P

1�q�sq;

from (50) we obtain

K14�p; q� � hApBqi ÿ hApihBqi
� 1

2

P
11�p; q��sp�q � sqÿp ÿ 2cpsq�: �51�

APPENDIX B

Let us assume that (a) �(x) is the electron density
de®ned in the unit cell (e.g., for the one-dimensional
case, 0 � x � 1), (b) F� p� � A� p� � iB� p� is the struc-
ture factor (p denotes the coordinate of a ®xed point in
reciprocal space), (c) q is the coordinate of a generic
point in reciprocal space. Consider

P

Z1
ÿ1

B�q�
qÿ p

dq � P

Z1
ÿ1

dq

Z1

0

��x� sin�2�qx�
qÿ p

dx

�
Z1

0

dx��x�P
Z1
ÿ1

sin�2�qx�
qÿ p

dq;

�52�
where P denotes the Cauchy principal value. If the
variable q in (52) is replaced by � � qÿ p and the
relation

P

Z1
ÿ1

sin�2��x�
�

d� � 2P

Z1
0

sin�2��x�
�

d� � �
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is applied, then (52) reduces to

�
R1
0

��x� cos�2�px� dx � �A�p�;

from which the required Hilbert transform

A�p� � 1

�
P

Z1
ÿ1

B�q�
qÿ p

dq �53�

is obtained. The same procedure may be applied to the
integral

P

Z1
ÿ1

A�q�
qÿ p

dq � P

Z1
ÿ1

dq

Z1

0

��x� cos�2�qx�
qÿ p

dx;

yielding

B�p� � ÿ 1

�
P

Z1
ÿ1

A�q�
qÿ p

dq; �54�

so that

F�p� �A�p� � iB�p�

� 1

�
P

Z1
ÿ1

B�q� ÿ iA�q�
qÿ p

dq

� ÿ i

�
P

Z1
ÿ1

F�q�
qÿ p

dq: �55�

Let us now explicitly consider the three-dimensional
case: �q � �q1; q2; q3� and �p � � p1; p2; p3� are the generic
points in the reciprocal space S�. Then,

P

Z1
ÿ1

Z1
ÿ1

Z1
ÿ1

B�q1; q2; q3�
�q1 ÿ p1��q2 ÿ p2��q3 ÿ p3�

dq1 dq2 dq3

�
Z1

0

Z1

0

Z1

0

��x; y; z� dx dy dz

� P

Z1
ÿ1

Z1
ÿ1

Z1
ÿ1

sin 2��q1x� q2y� q3z�
�q1 ÿ p1��q2 ÿ p2��q3 ÿ p3�

dq1 dq2 dq3

� ÿ�3

Z1

0

Z1

0

Z1

0

��x; y; z� cos 2��p1x� p2y� p3z� dx dy dz

� ÿ�3A�p�:
Therefore,

A�p� � ÿ�ÿ3P

Z
S�

B�q�
�q1 ÿ p1��q2 ÿ p2��q3 ÿ p3�

dS�:

�56�
In the same way, one can ®nd

B�p� � �ÿ3P

Z
S�

A�q�
�q1 ÿ p1��q2 ÿ p2��q3 ÿ p3�

dS�; �57�

so that

F�p� � �ÿi=��ÿ3
P

Z
S�

F�q�
�q1 ÿ p1��q2 ÿ p2��q3 ÿ p3�

dS�:

�58�
It should be useful to note that the dimension of the
reciprocal space de®nes the integrand on the right-hand
side of the relationships (53), (54), (56) and (57). In
particular, in the two-dimensional case,

A�p� � ÿ�ÿ2P

Z
S�

A�q�
�q1 ÿ p1��q2 ÿ p2�

dS�

and

B�p� � ÿ�ÿ2P

Z
S�

B�q�
�q1 ÿ p1��q2 ÿ p2�

dS�:

Accordingly, in an n-dimensional case, the general
formula to apply is

F�p� � �ÿi=��nP

Z
S�

F�q�Qn
j�1�qj ÿ pj�

dS�: �59�
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